设计模式之合成模式(九)

合成模式是一组对象的组合,这些对象可以是容器对象,表现为组的概念;另外一些对象则代表了单对象,或称为叶子对象。

在现实生活中,存在很多“部分-整体”的关系,例如,大学中的部门与学院、总公司中的部门与分公司、学习用品中的书与书包、生活用品中的衣月艮与衣柜以及厨房中的锅碗瓢盆等。在软件开发中也是这样,例如,文件系统中的文件与文件夹、窗体程序中的简单控件与容器控件等。对这些简单对象与复合对象的处理,如果用组合模式来实现会很方便。

合成模式的意图是为了保证客户端调用单对象与组合对象的一致性。

合成模式的结构

组合模式包含以下主要角色。

  • 抽象构件(Component)角色:它的主要作用是为树叶构件和树枝构件声明公共接口,并实现它们的默认行为。在透明式的组合模式中抽象构件还声明访问和管理子类的接口;在安全式的组合模式中不声明访问和管理子类的接口,管理工作由树枝构件完成。
  • 树叶构件(Leaf)角色:是组合中的叶节点对象,它没有子节点,用于实现抽象构件角色中 声明的公共接口。
  • 树枝构件(Composite)角色:是组合中的分支节点对象,它有子节点。它实现了抽象构件角色中声明的接口,它的主要作用是存储和管理子部件,通常包含 Add()、Remove()、GetChild() 等方法。

组合模式分为透明式的组合模式和安全式的组合模式。

(1) 透明方式:在该方式中,由于抽象构件声明了所有子类中的全部方法,所以客户端无须区别树叶对象和树枝对象,对客户端来说是透明的。但其缺点是:树叶构件本来没有 Add()、Remove() 及 GetChild() 方法,却要实现它们(空实现或抛异常),这样会带来一些安全性问题。其结构图如图 1 所示。
合成模式结构图

图1 透明式的组合模式的结构图

(2) 安全方式:在该方式中,将管理子构件的方法移到树枝构件中,抽象构件和树叶构件没有对子对象的管理方法,这样就避免了上一种方式的安全性问题,但由于叶子和分支有不同的接口,客户端在调用时要知道树叶对象和树枝对象的存在,所以失去了透明性。其结构图如图 2 所示。
合成模式结构图

图2 安全式的组合模式的结构图

合成模式的实现

talk is cheap, show the code:

抽象构件

1
2
3
4
5
6
public interface Component{
public void add(Component c);
public void remove(Component c);
public Component getChild(int i);
public void operation();
}

树叶构件

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
public class Leaf implements Component{
private String name;
public Leaf(String name)
{
this.name=name;
}
public void add(Component c){ }
public void remove(Component c){ }
public Component getChild(int i)
{
return null;
}
public void operation()
{
System.out.println("树叶"+name+":被访问!");
}
}

树枝构件

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
public class Composite implements Component{
private ArrayList<Component> children=new ArrayList<Component>();
public void add(Component c)
{
children.add(c);
}
public void remove(Component c)
{
children.remove(c);
}
public Component getChild(int i)
{
return children.get(i);
}
public void operation()
{
for(Object obj:children)
{
((Component)obj).operation();
}
}
}

测试

1
2
3
4
5
6
7
8
9
10
11
12
public static void main(String[] args){
Component c0=new Composite();
Component c1=new Composite();
Component leaf1=new Leaf("1");
Component leaf2=new Leaf("2");
Component leaf3=new Leaf("3");
c0.add(leaf1);
c0.add(c1);
c1.add(leaf2);
c1.add(leaf3);
c0.operation();
}

结果:
树叶1:被访问!
树叶2:被访问!
树叶3:被访问!

常见案例及应用场景

常见案例:算术表达式包括操作数、操作符和另一个操作数,其中,另一个操作符也可以是操作数、操作符和另一个操作数。
应用场景:

  • 在需要表示一个对象整体与部分的层次结构的场合。
  • 要求对用户隐藏组合对象与单个对象的不同,用户可以用统一的接口使用组合结构中的所有对象的场合。

总结

在使用合成模式时,或在对组合对象建模时,通常需要给组合节点引入递归定义。倘若存在递归定义,编写代码时,需要注意防止死循环。为避免这一问题,可以确保组合对象都是树形结构。

合成模式的主要优点有:

  • 合成模式使得客户端代码可以一致地处理单个对象和组合对象,无须关心自己处理的是单个对象,还是组合对象,这简化了客户端代码;
  • 更容易在组合体内加入新的对象,客户端不会因为加入了新的对象而更改源代码,满足“开闭原则”;

其主要缺点是:

  • 设计较复杂,客户端需要花更多时间理清类之间的层次关系;
  • 不容易限制容器中的构件;
  • 不容易用继承的方法来增加构件的新功能;